深圳市华科百誉科技有限公司

	更》		规格书编号 File No. 武日 Issue Date: 订日 Revision Date:	2016年(Y) 10月(M) 13日(D) XXXX年(Y) XX月(M) XX日(D)
New			见格书 ecification	
	产品名 Product	TFT-LC	D Module	_
	机种名 Mode l	M156X4	_	
	Customer	's Approve	NCPD	
			Approved by Project Directo Name : Date : Signature:	or :
			Reviewed by Project manager Name : Date : Signature:	
			Reviewed by Project Leader: Name : Date : Signature:	

※ 本基准书由封面、附件等全_20页构成。如果对该规格书有异议,请在下订单前提出。

* This Product Specification have<u>20</u> pages including the coversheet and Appendices. Please negotiate the objection point before purchase order.

RECORDS OF REVISION

Model No. : M156X40-137-0101 REVISED DATE NO. PAGE SUMMARY NOTE No. 2016/10/13-1 First Edition Tentative -

1. Application

This specification applies to a color TFT-LCD Module, M156X40-137-0101

2. Overview

This module is a color active matrix LCD module incorporating Oxide TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, a control circuit and power supply circuit. Graphics and texts can be displayed on a $1920 \times 3 \times 1080$ dots panel with 262144 colors by using eDP (Embedded Display Port) Ver1.2 interface and supplying +3.3 V DC supply voltage for TFT-LCD panel driving.

In this TFT-LCD panel, color filters for excellent color performance is incorporated to realize brighter and clearer pictures, making this Module optimum for use in multi-media applications.

Optimum viewings are in all directions.

9serial 4paralel LED structure.

Backlight-driving LED controller is built in this Module.

eDP transfer rate specification: 2.7Gbps/2 lane.

3. Generalspecifications.

Parameter	Specification	Unit	Note
Display size	394.38 (Diagonal)	mm	
Display size	15.6 (Diagonal)	inch	
Active area	344.16(H) × 193.59(V)	mm	
Dival Format	1920(H) × 1080(V)	minal	
Pixel Format	(1pixel = R + G + B dot)	pixel	
Pixel pitch	0.17925(H) x 0.17925 (V)	mm	
Pixel configuration	R, G, B vertical stripe		
Display mode	Normally black		
Driving scheme	FFS		
Power Consumption	0.561	W	
Surface treatment of front polarizer	Anti-glarecoating: (3H)		

Outline dimensions

Parameter	Min.	Тур.	Max.	Unit	Remark	
Unit outline dimensions	Width	359.2	359.5	359.8	mm	
Oline outline dimensions	Height	223.25	223.75	224.25	mm	[Note3-1]
	Depth				mm	
Mass			TBD		g	

[Note 3-1] With PWB

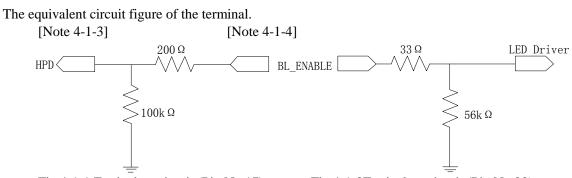
4. Input Terminals

4-1 Driving interfaceofPWB

CN1 (eDPsignals, +3.3V DC power supply and B/L power supply)

Pin No.	Symbol	I/O	Function	Remark
1	NC	-	Reserved for LCD	[Note4-1-1]
2	H_GND	Р	High Speed Ground	[Note4-1-2]
3	Lane1_N	Ι	Complement Signal Link Lane 1	
4	Lane1_P	Ι	True Signal Link Lane 1	
5	H_GND	Р	High Speed Ground	[Note4-1-2]
6	Lane0_N	Ι	Complement Signal Link Lane 0	
7	Lane0_P	Ι	True Signal Link Lane 0	
8	H_GND	Р	High Speed Ground	[Note4-1-2]
9	AUX_CH_P	Ι	True Signal Auxiliary Channel	
10	AUX_CH_N	Ι	Complement Signal Auxiliary Channel	
11	H_GND	Р	High Speed Ground	[Note4-1-2]
12	LCD_VCC	Р	LCD logic and driver power(3.3V)	
13	LCD_VCC	Р	LCD logic and driver power(3.3V)	
14	NC	Ι	Reserved for LCD manufacturer's use	[Note4-1-1]
15	LCD_GND	Р	LCD logic and driver ground	
16	LCD_GND	Р	LCD logic and driver ground	
17	HPD	0	HPD Signal	[Note4-1-3]
18	BL_GND	Р	Backlight ground	
19	BL_GND	Р	Backlight ground	
20	BL_GND	Р	Backlight ground	
21	BL_GND	Р	Backlight ground	
22	BL_ENABLE	Ι	Backlight on/off	[Note4-1-4]
23	BL_PWM_DIM	Ι	System PWM	[Note4-1-5]
24	NC	-	Reserved for LCD for manufacturer's use	[Note4-1-1]
25	NC	-	Reserved for LCD for manufacturer's use	[Note4-1-1]
26	BL_PWR	Р	Backlight power	
27	BL_PWR	Р	Backlight power	
28	BL_PWR	Р	Backlight power	
29	BL_PWR	Р	Backlight power	
30	NC	-	Reserved for LCD for manufacturer's use	[Note4-1-1]

*1 P: POWER I: Input O: Output


[Note 4-1-1] Don't input any signals or any powers into a NC pin. Keep the NC pin open.

[Note 4-1-2] The shielding case is connected with signal GND.

Connector used :20455-030E-66 (I-PEX)

• Corresponding connector : 20453-030T (I-PEX)

(Panda is not responsible to its product quality, if the user applies a connector not corresponding to the above model.)

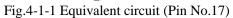


Fig.4-1-2Equivalent circuit (Pin No.22)

[Note 4-1-5]

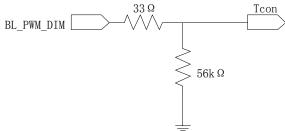


Fig.4-1-3 Equivalent circuit (Pin No.23)

4-2 CN1 pin 1 position

4-3 eDP interface (Computer Side) Main Link (Isochronous Streams) (TFT-LCD Side) AUX CH (Link/Device Management) Displayport Rx Displayport Rx

Fig.4-3-1 DP architect

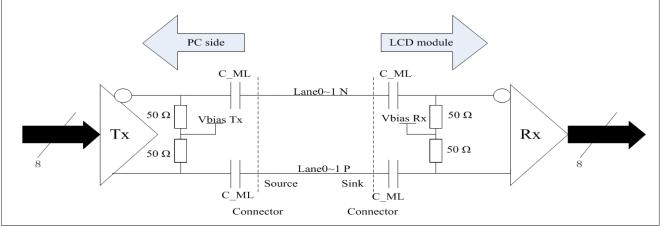


Fig.4-3-2 Main Link differential pair

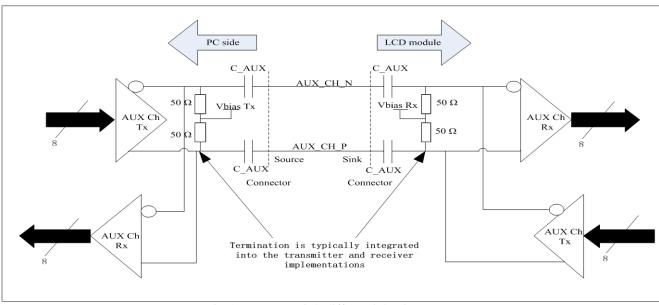


Fig.4-3-3 AUX Link differential pair

Lane0	Lanel
R0-7:0	R1-7:0
G0-7:0	G1-7:0
B0-7:0	B1-7:0
R2-7:0	R3-7:0
G2-7:0	G3-7:0
B2-7:0	B3-7:0
R4-7:0	R5-7:0
G4-7:0	G5-7:0
B4-7:0	B5-7:0

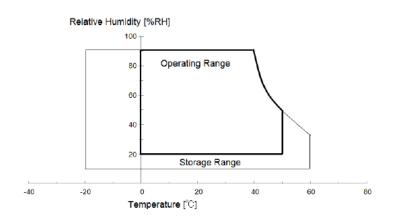
Fig.4-3-4 eDP 2lane 8bit input data mapping

5. Electrical Characteristics

5-1. Absolute Maximum Ratings

Parameter	Symbol	Condition	Rati	ngs	Unit	Remark	
1 arameter	Symbol	Condition	Min.	Max.	Omt	Kennark	
+3.3V supply voltage	VDD	Ta=25°C	-0.3	+4.0	V		
Back Light supply voltage	VBL	Ta=25°C	-0.3	+26.5	V		
Input voltage(eDP)	VI	Ta=25°C	-0.3	+1.5	V	[Note 5-1]	
Input voltage(BL)	VBL_I	Ta=25°C	-0.3	VDD+0.3	V	[Note 5-2]	
Operation temperature	TOPR	-	0	+50	°C	[Nota 5 2]	
Storage temperature	TSTG	_	-20	+60	°C	[Note 5-3]	

(*) "Absolute Maximum Ratings" is regulations that do not exceed it even momentarily.

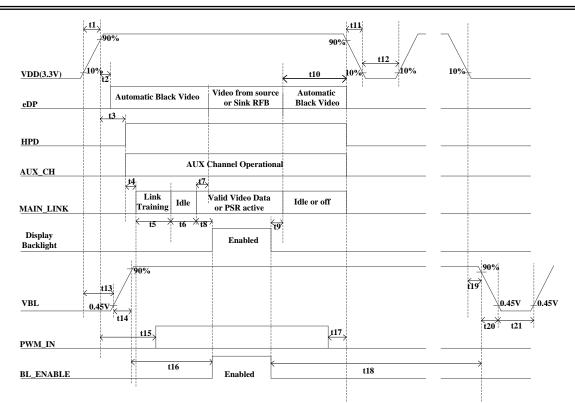

(*) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

[Note 5-1] eDP signal

[Note 5-2]Backlight control signals(BL_ENABLE,BL_PWM_DIM)

[Note 5-3] Humidity: 90% RH Max. (Ta \leq +40°C).

Maximum wet-bulb temperature at $+39^{\circ}$ C or less at Ta $>+40^{\circ}$ C, No condensation.



5-2. DC Characteristics

5-2-1. TFT-LCD panel driving

Ta=+25℃ **DC** Electrical Characteristics Max. Unit Remark Parameter Symbol Min. Typ. VDD +3.3V supply voltage +3.0+3.3V [Note 5-2-1] +3.6IDD (180)(290) Current dissipation mA [Note 5-2-2] Permissible input ripple voltage V_{RP} 100 mVp-p VDD=+3.3V -eDP AUX Channel Characteristics Parameter Symbol Min. Unit Remark Тур. Max. Unit Interval for AUX channel UI_{AUX} 0.4 0.5 0.6 μs Peak-to-peak voltage at TP1 0.32 V_{AUX-DIFF-pp} 1.36 V v 2.0 AUX DC Common mode Voltage V_{AUX-DC-CM} 0 -AUX Short current limit I_{AUX_SHORT} -_ 90 mA AUX CH terminationDCresistor 100 Ω Differential input R_{AUX TERM} --C_{AUX} AUX AC coupling capacitor 75 -200 nF Pre-charge Number of pre-charge pulses 10 16 pulses eDP Main Link Receiver Characteristics Parameter Symbol Min. Тур. Max. Unit Remark Down_Spread_Am 0 Link clock down spreading 0.5 % plitude Differential Peak-to-peak Input Voltage 90 1200 V_{RX-DIFFp-p} _ mV at Rx package pins Differential Return Loss at 1.35GHz at RL_{RX-DIFF} 9 dB _ Rx package pins Differential termination resistance R_{RX-TERM} 100 Ω _ _ RX short circuit Current Limit I_{RX-SHORT} -50 mA -T_{RX-SKEW-INTRA-P} Lane Intra-pair Skew at RX package 50 _ ps _ AIR-High-Bitpins

[Note 5-2-1] ON-OFF conditions for supply voltage

[Note5-2-1] Do not keep the interface signal high-impedance or unusual signal when power is on.

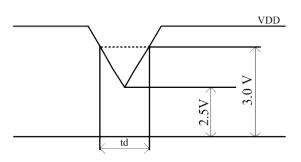
Symbol	Min	Max	Unit	Note
t1	0.5	10	ms	
t2	0	200	ms	
t3	0	100	ms	
t4	-	-	ms	
t5	-	-	ms	
t6	-	-	ms	
t7	0	50	ms	
t8	-	-	ms	
t9	-	-	ms	
t10	0	500	ms	
t11	1	50	ms	[Note 5-2-3]
t12	500	-	ms	
t13	-	-	ms	
t14	0.5	10	ms	
t15	100	-	ms	
t16	0	-	ms	
t17	0	-	ms	
t18	-	-	ms	
t19	-	-	ms	
t20	0.1	-	ms	
t21	100	-	ms	

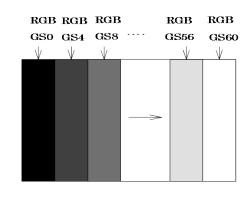
[Note 5-2-3]As for the power off sequence for VDD (t11), be sure to keep above mentioned timing. If the VDD power off sequence timing is other than shown above, LCD may cause permanent damage. As for the power sequence for backlight, it is recommended to apply above mentioned input timing. If the backlight is light on and off at a timing other than shown above displaying image maybe getdisturbed.

VDD-dip-conditions

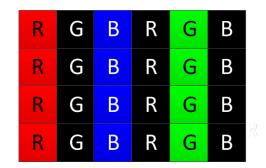
1) 2.5 V \leq VDD < 3.0 V

 $td \leq 10 ms$


Under above condition, the display image should return to anappropriate figure after VDD voltage recovers.


2) VDD<2.5 V

VDD-dip conditions should also follow the ON-OFF conditions for supply voltage.

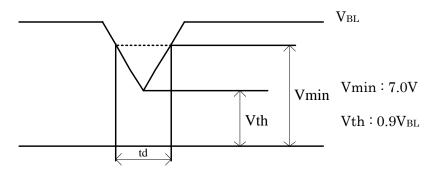

[Note 5-2-2]

Typical current condition: 16-gray-bar pattern. VDD=+3.3V

Maximum current condition: Vertical stripe pattern. VDD=+3.3V

5-3. Backlight driving (If necessary)

The backlight system is an edge-lighting type with white-LED.

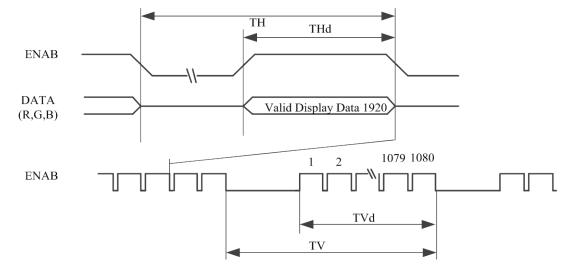

(It is usually required to measure under the following condition: $Ta=25^{\circ}C\pm2^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Supply voltage	V_{BL}	7.0	12.0	21.0	V	
Current dissipation	I_{BL}	-	(180)		mA	V _{BL} =12.0V Duty Ratio =100%
	V _{PWM} H	1.85	-	VDD	V	
Modulated light signal voltage	V _{PWM} L	0	-	0.7	V	
Brightness Control Duty Ratio	Duty	1	-	100	%	[Note5-3-1]
Brightness Control pulse width	T _{PWM}	5	-	-	us	[Note5-3-2]
Brightness Control frequency	f_{PWM}	200	-	2000	Hz	
LED-BL ON/OFF High voltage	V _{CNT} H	1.3	-	VDD	V	
LED-BL ON/OFF Low voltage	V _{CNT} L	0	-	0.5	V	[Note5-3-3]
Input signal (H level) pin current	I _{IN}	-	-	$V_{IN}/56K\Omega$	μΑ	BL_ENABLE, BL_PWM_DIM
LED lifetime	-	-	10000	-	h	LED

[Note5-3-1]VPWM Input : 100% = Max luminance 1% = Min luminance

[Note5-3-2]The minimum value of the dimming signal pulse width is assumed regulations of the width of high and the width of low.

 $[Note5-3-3]V_{CNT} Input : High = BL turn on, Low or OPEN = BL turn off$ **VBL-dip conditions**



1) Vth ≤ V_{BL} <Vmin : td ≤ 20ms
 2) V_{BL} <Vth : The condition of instantaneous voltage drop is apply to input voltage sequences

6. Timing characteristics of input signals 6-1.Timing Characteristics

Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	$1/T_{C}$	132.0	138.5	140.0	MHz	[Note 6-1-1]
	Harizantal raniad	TH	2020	2080	2400	clock	
	Horizontal period	ІП		15.02		μs	
	Horizontal period (High)	THd	-	1920	-	clock	
Data enable signal	Vantical mariad	TV	1090	1111	1200	line	
	Vertical period	TV	-	16.685	-	ms	
	Vertical period (High)	TVd	-	1080	-	line	

[Note 6-1-1] In case of using the long vertical period, the deterioration of display quality, flicker, etc, may occur.

6-2. Input data signals and display position on the screen

Display position of input data(V·H)

	Colors &											Data	a sig	nal						
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	B3	B4	В5
	Scale							MSB	LSB					MSB	LSB				<u> </u>	MSB
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
r	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Colo	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Ba	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ч	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	仓	\downarrow			``	↓ 					`	L					`	↓ 		
Sca	Û	\downarrow			`	Ļ					`	Ļ					,	Ļ		
j ray	Brighter	GS25	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	Û	GS25	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS25	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gre	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
e of	Û	\downarrow			``	↓ ↓					Ň	L					`	↓ ↓		
Gray Scale of Green	Û	\downarrow			Ì	≁					Ì	↓ 					Ň	¥ 		
ray	Brighter	GS25	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
0	Û	GS25	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS25	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ue	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
ale o	۲ -	\downarrow				* ↓						r 						·		
/ Scé	Û	\downarrow			1												,	•		
Gray	Brighter	GS25	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	Û	GS25	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS25	0	0	0	0	0	0	0	0	0.1	0	0 leve	0 el vo	1 Itage	1	1	1 1·	1 Hig	1 h ler

7. Input signal, basic display colors and gray scale of each color

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of 18 bit data signals, the 262144color display can be achieved on the screen.

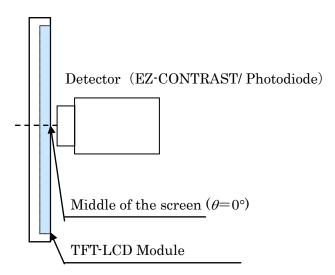
8 EDID Specifications (TBD)

This is the EDID(Extended Display Identification Data) data formats to support displays as defined in the VESA Plug & Display.

9 Optical characteristics

								Ta=25°C	
Param	eter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
	Hammantal	θ21			(89)		Dag		
Viewing angle	Horizontal	θ22	CR>10		(89)		Deg.	[Note9-1,9-3,9-4,9-6]	
range	Vertical	θ11	CK/10		(89)		Deg.	[[N0109-1,9-3,9-4,9-0]	
	ventical	θ12			(89)		Deg.		
Contrast	ratio	CR		700	1000		-	[Note9-2,9-4,9-6]	
Response	e time	$\tau_{\rm r}\!\!+\!\tau_{\rm d}$			25	35	ms	[Note9-1,9-5,9-6]	
Charamatiaita	, of white	Х			0.313	- Typ+0.03-	-		
Chromaticity	y of white	у		Тур-0.03	0.329		-		
Chromatici	ty of red	Х			0.590		I		
Chromatici	ty of feu	у	$\theta = 0 \text{ deg.}$		0.350		-		
Chromaticity	of green	Х	0 -0 deg.	-) [0.00	0.330	1)[1]0100		[Note 9-2, 9-6]	
Chromatienty	y of green	У			0.555		-	Normal operation	
Chromaticit	v of blue	Х			0.153		-	(PWM Duty=100%)	
Chromatien	y of blue	У			0.119		-		
NTSC ratio		%		-	45	-	-		
Luminance	Luminance of White]	200	220	-	cd/m ²		
Cell Trans	parency	Т		-	(6.5)	-	-		
White unifor	mity 13pt	δ_{W}	$\theta = 0 \text{ deg.}$	-	(1.3)	(1.5)	-	[Note 9-2, 9-7]	

*The measurement shall be taken 30 minutes after lighting the Open-cell at the following rating.


*Condition: PWM Duty = 100%

*The optical characteristics shall be measured in a dark room or equivalent.

[Note 9-1] Measurement of viewing angle range

[Note 9-2] Measurement of luminance and

and Response time. Chromaticity and Contrast.

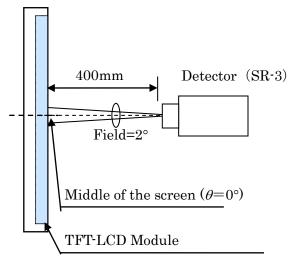
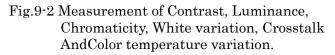



Fig.9-1 Measurement of Viewing angle range and Response time. (Viewing angle range: EZ-CONTRAST, Response time: Photodiode)

[Note 9-3]Definitions of viewing angle range:

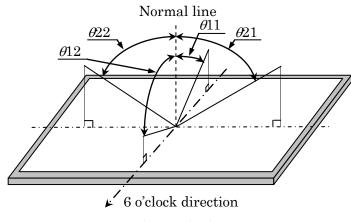


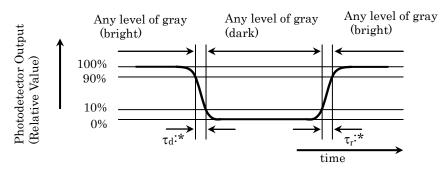
Fig.9-3 Viewing angle

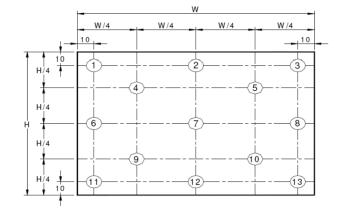
[Note 9-4]Definition of contrast ratio:

The contrast ratio is defined as the following. Contrast Ratio = $\frac{\text{Luminance}(\text{Brightness}) \text{ with all pixels white}}{\text{Luminance}(\text{Brightness}) \text{ with all pixels Black}}$

[Note 9-5]Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white" .




Fig.9-4 Response time

[Note 9-6] This shall be measured at center of the screen.

[Note 9-7]Definition of white uniformity:

White uniformity is defined as the following with 13 measurements($A \sim M$).

$$\delta_W = \frac{\text{Maximum Luminance of 13 Points(Brightness)}}{\text{Minimum Luminance of 13 Points(Brightness)}}$$

10 Display Quality

The display quality of the color TFT-LCD Module shall be in compliance with the Incoming Inspection Standard.

11 Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- Please insert for too much stress not to join a connector in the case of insertion of a connector.
- b) Be sure to design the cabinet so that the Module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this Module, take care of static electricity and injure the human earth when handling. Observe all other precautionary requirements in handling components.
- h) This Open-cell has its circuitry PCBs on the side and should be handled carefully in order not to be stressed.
- i) Laminate film is attached to the Module surface to prevent it from being scratched. Peel the laminate film off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc. Working under the following environments is desirable.

• All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.

• Use Ionized blower for electrostatic removal, and peel of the laminate film with a constant speed. (Peeling of it at over 2 seconds)

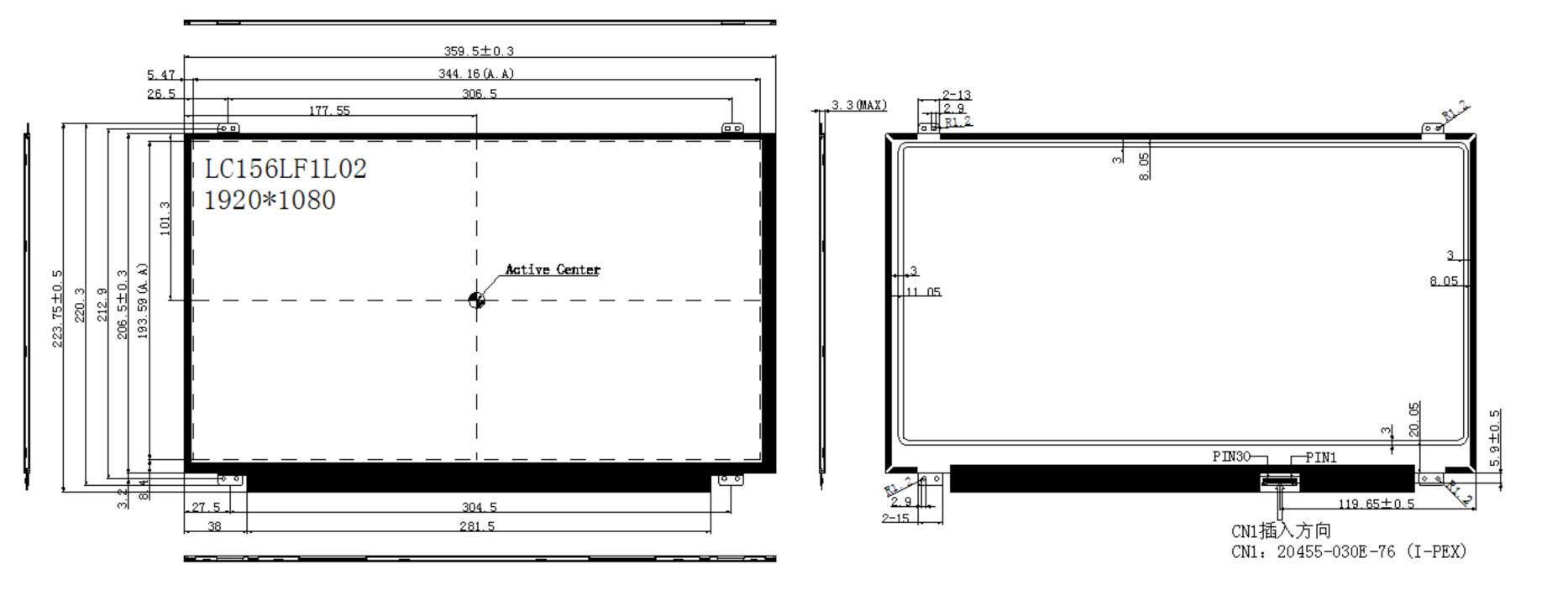
- j) The polarizer surface on the panel is treated with Anti Glare . In case of attaching protective board over the LCD, be careful about the optical interface fringe etc. which degrades display quality.
- k) Do not expose the LCD Module to a direct sunlight, for a long period of time to protect the Module from the ultra violet ray.
- 1) When handling LCD Modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the Modules.
- m) Liquid crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.
- n) Disassembling the Module can cause permanent damage and should be strictly avoided. (Except for protection film of the panel.)
- o) Be careful when using it for long time with fixed pattern display as it may cause afterimage. (Please use a screen saver etc., in order to avoid an afterimage.)
- p) If a minute particle enters in the Module and adheres to an optical material, it may cause display non-uniformity issue, etc. Therefore, fine-pitch filters have to be installed to cooling and inhalation hole if you intend to install a fan.
- q) Epoxy resin (amine series curing agent), silicone adhesive material (dealcoholization series and oxime series),

tray forming agent (azo compound) etc, in the cabinet or the packing materials may induce abnormal display with polarizer film deterioration regardless of contact or noncontact to polarizer film. Be sure to confirm the component of them.

- r) Do not use polychloroprene. If you use it, there is some possibility of generating Cl₂ gas that influences the reliability of the connection between LCD panel and driver IC.
- s) Do not put a laminate film on LCD Module, after peeling of the original one. If you put on it, it may cause discoloration or spots because of the occurrence of air gaps between the polarizer and the film.
- t) Ground module bezel to stabilize against EMI and external noise.

12 Packaging Condition(TBD)

- 13 Label (TBD)
 1) Module Bar code label: TBD
 2) Packing bar code label TBD
- 14 RoHS Directive This LCD Module is compliant with RoHS Directive.


15 Reliability Test Items

No.	Test Item	Conditions
1	High temperature storage test	Ta=70°C 240h
2	Low temperature storage test \triangle 3	Ta=-35°C 240h
3	High temperature & high humidity operation test	Ta=50°C95%RH 240h
	& high number operation test	(No condensation)
4	High temperature operation test	Ta=60°C 240h
5	Low temperature operation test	Ta=-10°C 240h

[Result Evaluation Criteria] Under the display quality test condition with normal operation state.

Do not change these condition as such changes may affect practical display function.

[Normal operation state] temperature: +15~+35°C, Humidity: 45~75%, Atmospheric pressure: 86~106kPa

