深圳市华科百誉科技有限公司

PRODUCT SPECIFICATION

MODEL: HK070R1130B01

DESIGNED	CHECKED	A PPROVED

REVISION STATUS

V1.0 2018.12.13 - First Issued. Jason

2018.12.13 2/18

CONTENTS

1. GENERAL DESCRIPTION	P.4
2. MECHANICAL SPECIFICATION	P.5
3. PIN DESCRIPTION	P.6
4. BLOCK DIAGRAM	P.7
5. ELECTRICAL CHARACTERISTICS	P.8
6. INPUT SIGNAL CHARACTERISTICS	P.11
7. OPTICAL CHARACTERISTICS	P.13
8. QUALITY ASSURANCE SYSTEM	P.16
9. GENERAL PRECAUTION	P.17
10. PACKAGE DRAWING	P.18

1. GENERAL DESCRIPTION

1.1 DESCRIPTION

AINFULL Display model HK070R1130B01 is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver ICs and a backlight unit. The following table describes the features of this LCM.

1.2 FEATURES

No.	ltem	Specification	Unit
1	Panel Size	7	inch
2	Number of Pixels	800 × 3(RGB) ×1280	pixels
3	Active Area	94.20(H) ×150.72(V)	mm
4	Pixel Pitch	0.11775(H) ×0.11775(V)	mm
5	Outline Dimension	104.30(H) × 161.65(V) × 2.35(D)	mm
6	Pixel arrangement	RGB Vertical stripe	-
7	Display Mode	IPS with Normally Black	-
8	Viewing Direction	ALL Viewing Direction	-
9	Display Color	16.7M	-
10	Surface Treatment	Anti-Glare and Hard-coating 3H	-
11	Interface	LVDS	-
12	Backlight	White LED	-
13	Drive IC	÷ -	-
14	Operation Temperature	0~50	°C
15	Storage Temperature	-20~60	°C
16	Weight	97(Typ.)	g

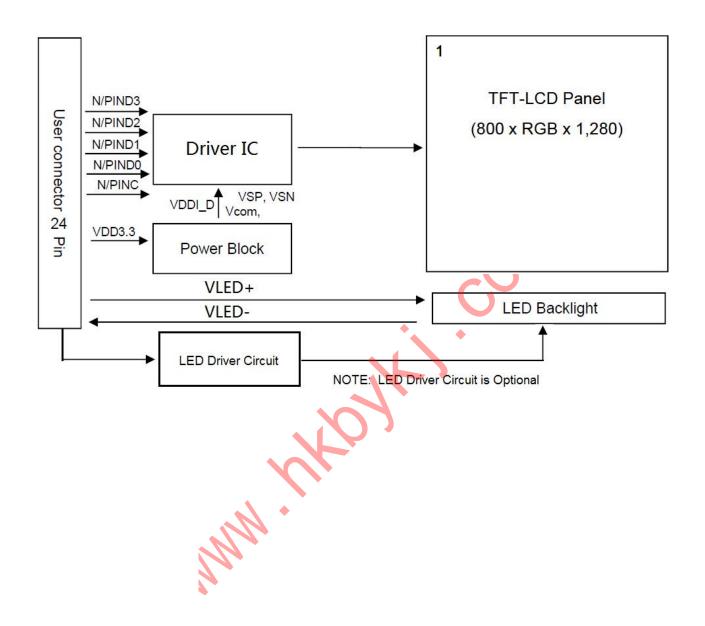
2018.12.13 4/18

2. MECHANICAL SPECIFICATION Unit:mm <u>161.65±0.20(OUTLINE)</u> 153.02±0.20(UP POL) 0.74 *2.29* 150.72(A.A) 20±0.20(UP POL) .30±0.20(OUTLINE) A Detail Connector whitehan Server 20Din Connector:pitch=0.5mm,30Pin APPROVEDBY CHECK REVSION Α0 MODEL NO CHECKEDBY DRAWNBY DATE 2018-12-13

2018.12.13 5/18

PAGE

3. PIN DESCRIPTION


3.1 CN1 of FPC

Pin No.	Symbol	I/O	Function	Remark
1	VDD(3.3V)	Р	Power supply VDD=3.3V	
2	VDD(3.3V)	Р	Power supply VDD=3.3V	
3	LED_EN	I	Backlight Enable	
4	GND	Р	Ground	
5	D0N	I	-LVDS differential data	
6	D0P	I	+LVDS differential data	
7	GND	Р	Ground	
8	D1N	I	-LVDS differential data	
9	D1P	I	+LVDS differential data	
10	GND	Р	Ground	
11	D2N	I -LVDS differential data		
12	D2P	I	+LVDS differential data	
13	GND	Р	Ground	
14	CLKN	I	-LVDS differential clock input	
15	CLKP	I	+LVDS differential clock input	
16	GND	Р	Ground	
17	D3N	I	-LVDS differential data	
18	D3P	1	+LVDS differential data	
19	PWM		Pulse width Modulation for LED	
20	VLED	Р	LED Driver Circuit Voltage(5~12V)	
21	GND	P	Ground	
22	NC	_	No connection	
23	NC	- 11/-	No connection	
24	NC	1	No connection	
25	NC	-	No connection	
26	GND	Р	Ground	
27	NC(LED+)	-/P	No connection(LED+ is optional)	
28	NC(LED+)	-/P	No connection(LED+ is optional)	
29	NC(LED-)	-/P	No connection(LED- is optional)	
30	NC(LED-)	-/P	No connection(LED- is optional)	

Note1: I/O definition:I: input, O: output, P: Power, -: No connection

2018.12.13 6/18

4. BLOCK DIAGRAM

2018.12.13 7/18

5. ELECTRICAL CHARACTERISTICS

5.1 ABSOLUTE MAXIMUM RATINGS

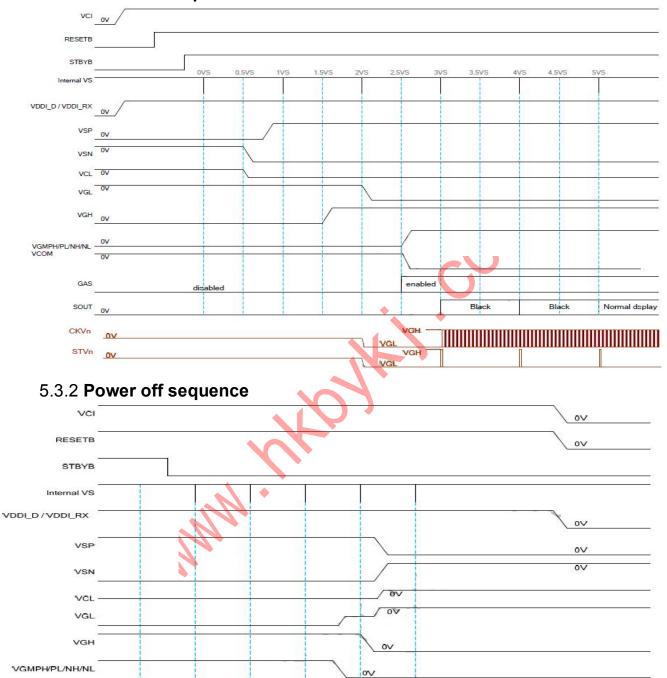
AGND=GND=0V, Ta = 25 $^{\circ}$ C

Item	Symbol	Valu	es	Unit	Remark
	Symbol	Min.	Max.	Oilit	Nemaik
Power input	VDD	-0.3	3.6	V	
VSP voltage	VSP	-0.3	6.5	V	
VSN voltage	VSN	-6.5	0.3	V	

5.2 RECOMMENDED OPERATING CONDITION

AGND=GND=0V, Ta = 25° C

Item	O wash al	Values				D
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power input	VDD	2.6	3.3	3.6	V	
VSP voltage	VSP	4.5	-	6	V	
VSN voltage	VSN	-6	-	-4.5	V	
VLED voltage	VLED	5	1	12	V	


2018.12.13 8/18

5.3 POWER SEQUENCE

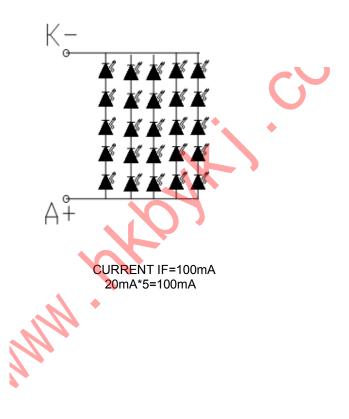
VCOM

SOUT Normal dsplay

5.3.1 Power on sequence

2018.12.13 9/18 Model N: 0755-27202602 Ver: 1.0

disabled

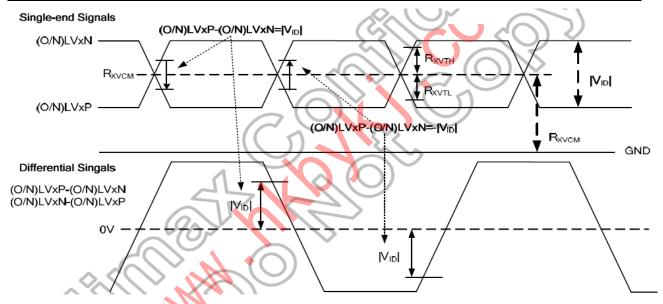

07

VGI OV

5.4 BACKLIGHT UNIT

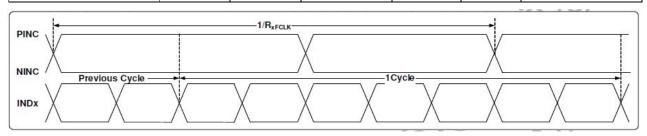
Item	Symbol		Values		Unit	Remark	
	Cymbol	Min.	Тур.	Max.		Kemark	
Forward voltage	VF	14.5	15	16	V	. IF=20mA/1-chip	
Forward current	If	-	100	-	mA		

5.5.1 Internal Circuit Diagram

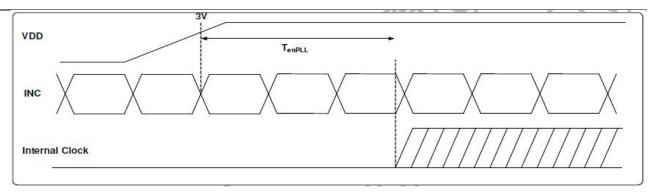


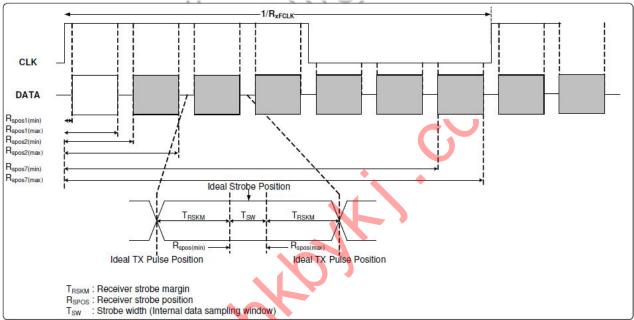
2018.12.13 10/18

6. INPUT SIGNAL CHARACTERISTICS


6.1. LVDS mode DC electrical characterstics

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential input high threshold	RxvTH	+0.1	-		V	Rxvcm=1.2V
Differential input low threshold voltage	RXVTL	-	-	-0.1	V	-
Input voltage range(singled-end)	RXVIN	0.7- VID /2	-	1.4+ VID /2	V	-
Differential input common Mode voltage	Rxvсм	0.7	-	1.4	V	-
Differential input voltage	VID	0.2		0.6	V	-
Differential input leakage current	RVxliz	-10	-	+10	uA	-
LVDS digital operating current	Iddlvds	-	15	30	mA	Fdk=65MHz VDD=3.3V
LVDS digital stand-by current	IstIvds	-	10	50	uA	Clock & all Functions are stopped




6.2.LVDS mode AC electrical characteristics

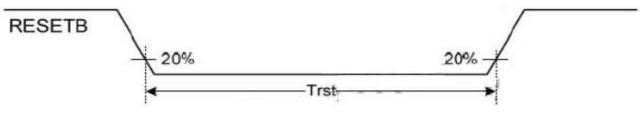
	S.E.E V DO MOGE AS CICOLITICAL CHALACTERISTICS										
Item	Symbol	Min.	Тур.	Max.	Unit	Condition					
Clock frequency	Rxfclk	20	-	85	MHz	RXVCM=1.2V					
Input data skew margin	Trskm	500	-	-	ps	V _{ID} =400mV RxvcM=1.2V					
						Rxfclk=71MHZ					
Clock high time	TLVCH	-	4/(7*Rxfclk)	-	ns	-					
Clock low time	TLVCL	-	3/(7*Rxfclk)	_	ns	-					
PLL wake-up time	TRMPLL	-	-	150	us	-					

2018.12.13 11/18

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Modulation frequency	SSCMF	23	-	93	KHz	Rxvcm=1.2V
Modulation rate	SSCMR		-	±3	%	LVDS clock=71MHz center spread

6.3 Reset Timing Characteristics

When RESETB of reset pin equals to Low, it will be in the condition of reset.


When it is in the condition of reset, it will make the device recover the initial set.

However,in order to avoid the reset noise cause reset, there is a mechanism to judge about whether the reset is needed or not.

The closed interval of Low can be shown as the following.

(VDDI_D=1.7V~1.9V,VSS=0V)

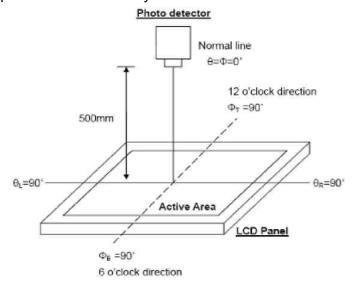
Doromotor	Symbol	Condition		Lloit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset low pulse width	Trst	-	20	-	-	us

2018.12.13 12/18

7. OPTICAL CHARACTERISTICS

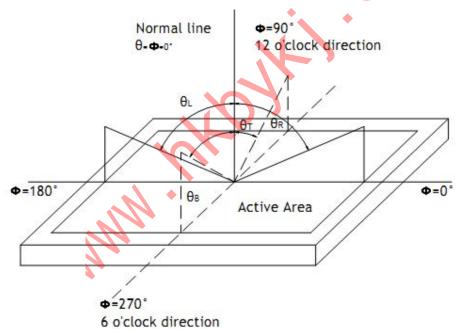
Light source :c-light(with normal polarizer)

Item		Symbol	Condition	Values			Linit	Domork
				Min.	Тур.	Max.	Unit	Remark
Viewing angle		Θu	CR≧10	80	85	-	degree	Note2
		ΘD		80	85	ı		
		Θ_{L}		80	85	-		
		ΘR		80	85	-		
Response time		Ton+Toff		-	25	50	ms	Note1 Note3
Contrast ratio		CR		600	800	ı	-	Note1 Note4
Luminance		L		280	300	-	cd/m²	
Luminance uniformity		YU		75	-	-	%	
Color chromaticity (CIE1931)	White	Wx	θ=Φ =0° Normal viewing angle	0.266	0.296	0.326		Note1 Note5
		WY		0.292	0.322	0.352		
	Red	Rx		-1		1		
		Ry			-	ı		
	Green	Gx) 1	-	ı		
		GY		-	-	1		
	Blue	Bx		-	-	-		
		Вү		-	-	-		
NTSC					60%			


Test Conditions:

1.Measuring surrounding:dark room

- 2. The ambient temperature is 25±2°C.
- 3. The test systems refer to Note1 and Note2.


2018.12.13 13/18

Note1: Definition of optical measurement system

Note2: Definition of viewing angle range and measurement system

Viewing angle is measured at the center point of the LCD by CONOSCOPE (ergo-80).

Note3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

2018.12.13 14/18

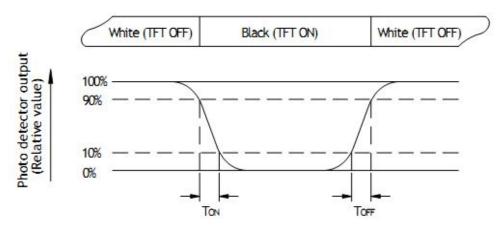


Fig. 6-3 Definition of response time

Note4: Definition of contrast ratio

Contrast ratio(CR)= Luminance measured when LCD on the Whitestate

Luminance measured when LCD on the Blackstate

"White state ": The state is that the LCD should drive by Vwhite.

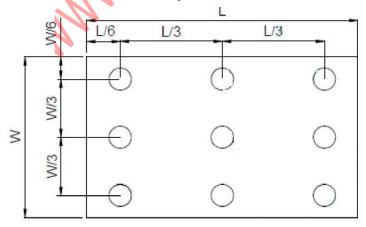
"Black state": The state is that the LCD should drive by Vblack. •

Vwhite: To be determined Vblack: To be determined.

Note5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note6: All input terminals LCD panel must be ground while measuring the center area of the panel.


The LED driving condition is IL=20mA of which each LED module is 3 LED serial.

Note7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas. Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L----Active area length, W---- Active area width

Bmax: The measured maximum luminance of all measurement position.

Bmin: The measured minimum luminance of all measurement position.

Note8: Definition of Luminance

Measure the luminance of white state at center point.

2018.12.13 15/18

8. QUALITY ASSURANCE SYSTEM

8.1 TEMPERATURE AND HUMIDITY

Test Item	Test Condition		
High Temperature Storage	Ta=60°C; 240hrs		
Low Temperature Storage	Ta=-20°C; 240hrs		
High Temperature Operation	Ta=50°C; 240hrs		
Low Temperature Operation	Ta=0°C; 240hrs		
High Temperature High Humidity Operation	Ta=50°C; 90%RH; 240hrs(no condensation)		
Thermal Shock	-20°C(0.5hrs) ~ 60°C(0.5hrs) / 100 cycles		
Image Sticking	25℃ ; 2hrs Note1		

Note1:Condition of image sticking test :25°C±2°C

Operation with test pattern sustained for 4hrs, then change to gray pattern immediately.after5 mins,the mura must be disappeared completely

(a) Test Pattern (chess board Pattern)

(b) Gray Pattern

8.2 VIBRATION & SHOCK

Test item	Conditions
Packing Shock (non-operation)	Shock level:980m/s 2 Waveform:1/2 Sine wave,6msec \pm X, \pm Y \pm Z,each axis 1 times
Packing Vibration (non-operation)	Frequency range:8 HZ~33.3HZ Stroke:1.0mm,sweep:10 HZ ~50 HZ x,y,z 2 hours for each direction

8.3 ESD

Test item	Conditions		
Electro Static Discharge Test (non-operation)	150pF,330 Ω , Contact \pm 4KV,Air : \pm 8KV Note 1		
Electio Static discharge Test (non-operation)	200pF,0 Ω , \pm 200V Contact test.Note 2		

Note1:LCD glass and metal bezel

Note2:IF connector pins

2018.12.13 16/18

9. GENERAL PRECAUTION

9.1 SAFETY

- (1) Do not swallow any liquid crystal, even if there is no proof that liquid crystal is poisonous.
- (2) If the LCD panel breaks, be careful not to get liquid crystal to touch your skin.
- (3) If skin is exposed to liquid crystal, wash the area thoroughly with alcohol or soap.

9.2 STORAGE CONDITIONS

- (1) Store the panel or module in a dark place where the temperature is 23±5°C and the humidity is below 50±20%RH.
- (2) Store in anti-static electricity container.
- (3) Store in clean environment, free from dust, active gas, and solvent.
- (4) Do not place the module near organics solvents or corrosive gases.
- (5) Do not crush, shake, or jolt the module.

9.3 HANDLING PRECAUTIONS

- (1) Avoid static electricity which can damage the CMOS LSI.
- (2) The polarizing plate of the display is very fragile. So, please handle it very carefully.
- (3) Do not give external shock.
- (4) Do not apply excessive force on the surface.
- (5) Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the Surface of plate.
- (6) Do not use ketonics solvent & Aromatic solvent, use with a soft cloth soaked with a cleaning naphtha solvent.
- (7) Do not operate it above the absolute maximum rating.
- (8) Do not remove the panel or frame from the module.
- (9) When the module is assembled, it should be attached to the system firmly, Be careful not to twist and bend the module.
- (10)Wipe off water droplets or oil immediately. If you leave the droplets for a long time, staining and discoloration may occur.
- (11) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.

9.4 WARRANTY

- (1)The period is within twelve months since the date of shipping out under normal using and storage conditions.
- (2) Do not repaired or modified the LCM . It may cause function to lose efficacy , Starry does not warrant the LCM.
- (3) All process and material comply RoHS.

2018.12.13 17/18

10. PACKAGE DRAWING

TBD

